
vlink portable multi-format linker

Frank Wille

i

Table of Contents

1 General . 1
1.1 Introduction . 1
1.2 Legal . 1
1.3 Installation . 1

2 The Linker . 3
2.1 Usage . 3
2.2 Supported file formats . 3
2.3 Linker Options . 5
2.4 Known Problems . 11
2.5 Credits . 11
2.6 Error Messages . 11

ii vlink manual

Chapter 1: General 1

1 General

1.1 Introduction

vlink is a portable linker which can be configured to support multiple input and output
file formats at once. It even allows to link input files with a different format in a single run
and generate the output file format of your choice from it.
The linker supports linking with objects, object archives (static libraries) and shared objects
or libraries. It can generate an executable file with or without additional information for
dynamic linking, a shared object, or a new object suitable for another linker pass.
Empty sections and other unused data are deleted to achieve a size-optimized output.

1.2 Legal

vlink is freeware and part of the portable and retargetable ANSI C compiler vbcc, copyright
(c) 1995-2011 by Volker Barthelmann.
vlink may be freely redistributed as long as no modifications are made and nothing is
charged for it. Non-commercial usage is allowed without any restrictions.
Every product or program derived directly from my source may not be sold commercially
without permission from the author.

1.3 Installation

vlink comes as a stand-alone program, so no further installation is necessary. To use vlink
with vbcc, copy the binary to ‘vbcc/bin’, following the installation instructions for vbcc.

2 vlink manual

Chapter 2: The Linker 3

2 The Linker

2.1 Usage

vlink links the object and archive files given on the command line into a new object file.
The output object file is either an executable program, a shared object suitable for loading
at run-time, or an object file that can once again be processed by vlink.

Object files and archives are processed in the order given on the command line. Unlike
other linkers you usually have to specify each library to link against only once, as vlink is
smart enough to figure out all dependencies.

The file format of an input object file is determined automatically by the linker. The default
output file format is compiled in (see ‘-v’) and may be changed by ‘-b’. Optionally, the
default library search path can also be compiled in and is visible with ‘-v’ as well.

The number of output file formats included is configurable at compile time.

2.2 Supported file formats

The following file formats are supported:

amigahunk
The AmigaDos hunk format for M68k. Requires AmigaOS 2.04. No shared
objects. Small data offset 0x7ffe. Linker symbols:
− DATA BAS (PhxAss)
− DATA LEN (PhxAss)
− BSS LEN (PhxAss)
− LinkerDB
− BSSBAS (SASC/StormC)
− BSSLEN (SASC/StormC)
− ctors (SASC/StormC)
− dtors (SASC/StormC)
− DATA BAS (DICE-C)
− DATA LEN (DICE-C)
− BSS LEN (DICE-C)
− RESIDENT (DICE-C)
− machtype (GNU-gcc)
− text size (GNU-gcc)
− data size (GNU-gcc)
− bss size (GNU-gcc)

Automatic constructor/destructor function tables: __ctors and __dtors (will
be mapped automatically to __CTOR_LIST__ and __DTOR_LIST__). Supports
‘-Rstd’ and ‘-Rshort’. This format was called "amigaos" in former vlink
versions.

4 vlink manual

amigaehf An extension of the AmigaDOS hunk format for the PowerPC, 32-bit, big en-
dian, as introduced by Haage&Partner GmbH. No executables (they are in
amigahunk format) or shared objects. The same linker symbols, construc-
tors/destructors as under amigaos are supported. Additionally, @_name symbols
will be created on demand (when referenced). Supports ‘-Rstd’ and ‘-Rshort’.

ataritos Atari-ST TOS file format. Executables only at the moment. The internal
linker script defines LinkerDB for small data and supports vbcc-style construc-
tor/destructor tables in the data section (__CTOR_LIST__ and __DTOR_LIST__).

elf32m68k
ELF (executable linkable format) for Motorola M68k, 32-bit, big endian.
Small data offset: 0x8000. Linker symbols: _SDA_BASE_. Automatic
constructor/destructor function tables will be placed into the sections .ctors
and .dtors. Supports ‘-Rstd’ and ‘-Radd’.

elf32i386
ELF (executable linkable format) for Intel 386 and better, 32-bit, little endian.
No small data. Automatic constructor/destructor function tables will be placed
into the sections .ctors and .dtors. Supports ‘-Rstd’ and ‘-Radd’.

elf32aros
ELF i386 32-bit little endian like elf32i386, but generates relocatable object
files as executables. This format is used for the AROS (Amiga Research OS)
operating system. Supports ‘-Rstd’ and ‘-Radd’.

elf32arm ELF (executable linkable format) for the ARM architecture. 32-bit, little en-
dian. Small data offset: 0x1000. Linker Symbols: _SDA_BASE_. Automatic
constructor/destructor function tables will be placed into the sections .ctors
and .dtors. Supports ‘-Rstd’ and ‘-Radd’.

elf32ppcbe
ELF (executable linkable format) for PowerPC, 32-bit, big endian. Small data
offset: 0x8000. Linker symbols: _SDA_BASE_ and _SDA2_BASE (EABI only).
Automatic constructor/destructor function tables will be placed into the sec-
tions .ctors and .dtors.

elf32powerup
ELF PowerPC 32-bit big endian like elf32ppcbe, but generates relocatable ob-
ject files as executables. This format is used for the PowerUp kernel. The
linker symbol _LinkerDB is defined for vbccppc-compatibility. Small data off-
set: 0x8000. This format was also called elf32amiga in former vlink versions.

elf32morphos
Nearly identical to elf32powerup. Only difference is that .sdata and .sbss
sections will not be merged as the MorphOS loader will take care of it. This
format is used for MorphOS.

elf32amigaos
Identical to elf32ppcbe, but when doing dynamic linking it requires that also
all references from shared objects are resolved at link time. This is due to a
limitation of the AmigaOS4 dynamic link editor (elf.library).

Chapter 2: The Linker 5

elf64x86 ELF (executable linkable format) for the x86 64 architecture. 64-bit, little
endian. No small data. Automatic constructor/destructor function tables will
be placed into the sections .ctors and .dtors. Supports ‘-Rstd’ and ‘-Radd’.

a.out Currently supported:
− aoutnull (Default with standard relocs and undefined endianess)
− aoutbsd68k (NetBSD/68k)
− aoutbsd68k4k (NetBSD/68k 4K page size)
− aoutsun010 (SunOS 68010 and AmigaOS/Atari 68000/010)
− aoutsun020 (SunOS 68020 and AmigaOS/Atari 68020-68060)
− aoutbsdi386 (NetBSD/i386)
− aoutpc386
− aoutmint (Embeds a.out in TOS format for Atari MiNT executables)
− aoutjaguar (M68k with special, word-swapped RISC relocations)

Small data offset: 0x8000 (unused). Linker symbols: __GLOBAL_OFFSET_
TABLE_, __PROCEDURE_LINKAGE_TABLE_, __DYNAMIC.

vobj-le
vobj-be VOBJ file format, generated by the vasm assembler. VOBJ is a read-only object

file format and is designed to support any little- or big-endian architecture with
all their specific relocations.

rawbin1 Absolute raw binary file. The sections and base addresses have to be specified
by a linker script (option ‘-T’). Gaps between sections are filled with 0-bytes.
Without a linker script, the raw binary will be relocated to base address 0.

rawbin2 Similar to rawbin1. The only difference is, that a separate file will be created
for every section. The file name will get the section’s base address appended.

srec19
srec28
srec37 Motorola S-Record format. No symbols. Output format only. Without a linker

script, the raw binary will be relocated to base address 0.

ihex Intel Hex format. No symbols. Output format only. Without a linker script,
the raw binary will be relocated to base address 0.

2.3 Linker Options

vlink command template:
vlink [-dhnqrstvwxMRSX] [-B linkmode] [-b targetname]
[-baseoff offset] [-C constructor-type] [-da] [-dc] [-dp] [-EB] [-EL]
[-e entrypoint] [-export-dynamic] [-f flavour] [-fixunnamed]
[-F filename] [-interp path] [-L library-search-path]
[-l library-specifier] [-minalign val] [-multibase] [-nostdlib]
[-o filename] [-rpath path] [-sc] [-sd] [-shared] [-soname name]
[-static] [-T filename] [-Ttext addr] [-textbaserel]
[-tos-flags/fastload/fastram/private/global/super/readable]

6 vlink manual

[-u symbol] [-V version] [-y symbol] [-P symbol] input-files...

Usually options and input file names can be mixed. Order of options may be important
(e.g. when specifying a library with ‘-l’ or a search path with ‘-L’).
The following options are supported:

‘-Bdynamic’
Specifies that linking against dynamic libraries can take place. If a library
specifier of the form ‘-lx’ appears on the command line, ld searches for a
library of the from ‘libx.so.n.m’ (see the ‘-l’ option) according to the search
rules in effect. If such a file can not be found a traditional archive is looked for.
This options can appear anywhere on the command line and is complementary
to ‘-Bstatic’.

‘-Bstatic’
The counterpart of ‘-Bdynamic’. This option turns off dynamic linking for
all library specifiers until a ‘-Bdynamic’ is once again given. Any explicitly
mentioned shared object encountered on the command line while this option is
in effect is flagged as an error.

‘-Bshareable’
Instructs the linker to build a shared object from the object files rather than a
normal executable image.

‘-Bsymbolic’
This option causes all symbolic references in the output to be resolved in this
link-edit session. The only remaining run- time relocation requirements are
base-relative relocations, ie. translation with respect to the load address. Fail-
ure to resolve any symbolic reference causes an error to be reported.

‘-Bforcearchive’
Force all members of archives to be loaded, whether or not such members
contribute a definition to any plain object files. Useful for making a shared
library from an archive of PIC objects without having to unpack the archive.

‘-b targetname’
Specifies target file format for the output file. See also "Supported file formats".

‘-baseoff offset’
Defines section offset for base-relative relocations. The default offset is target-
dependant (e.g. 0x7ffe for amigaos and 0x8000 for elf32m68k).

‘-C constructor-type’
Defines the type of constructor/destructor function names to scan for. Valid
types are:

gnu GNU style constructors

vbcc vbcc style constructors: __INIT[_<pri>]_<name> / __EXIT..

vbccelf vbcc style constructors: _INIT[_<pri>]_<name> / _EXIT..

‘-clr-adduscore’
No longer add a preceding underscore for the symbols of the following objects
in the command line.

Chapter 2: The Linker 7

‘-clr-deluscore’
No longer delete a preceding underscore for the symbols of the following objects
in the command line.

‘-d’
‘-dc’
‘-dp’ Force allocation of common symbols, even when producing relocatable output

(‘-r’ option).

‘-da’ Force allocation of address symbols (PowerOpen), even when producing relo-
catable output (‘-r’ option).

‘-e entrypoint’
Defines the entry point of an executable and may be either a symbol or an
absolute address. The linker will set the entry point by trying each of the
following methods in order, stopping when the first succeeds:
1. -e option
2. ENTRY() command in a linker script
3. value of the symbol _start, if defined
4. start of the first executable code section
5. address 0

‘-EB’ Presets big-endian mode for reading input and writing output.

‘-EL’ Presets little-endian mode for reading input and writing output.

‘-export-dynamic’
Put all global symbols of the output file into the dynamic symbol table, making
them visible for shared objects loaded on demand (e.g. by dlopen()).

‘-f flavour’
Adds a library-flavour. All flavours are cumulatively appended to each library
search-path, whenever a library was specified with ‘-l’. Example: One search
path and two flavours will search in:
1. ‘<lib-path>’,
2. ‘<lib-path>/<flavour1>’ and
3. ‘<lib-path>/<flavour1>/<flavour2>’

‘-F filename’
A list of object file names is read from the specified file. Useful, if the number
of objects exceeds the length of the command line.

‘-fixunnamed’
All unnamed sections will get a default name according to their section type
(.text, .data and .bss).

‘-h’ Prints a short help text.

‘-interp interpreter-path’
Defines the name of the interpreter, which is usually the dynamic linker for
dynamically linked ELF executables. Defaults to ‘/usr/lib/ld.so.1’.

8 vlink manual

‘-L library-search-path’
Add path to the list of directories to search for libraries specified with the
‘-l’ option. When a default search path was compiled in (see ‘-v’), then it is
searched last.

‘-l library-specifier’
This option specifies a library to be considered for inclusion in the output. If the
‘-Bdynamic’ option is in effect, a shared library of the form ‘lib<spec>.so.m.n’
(where m is the major, and n is the minor version number, respectively) is
searched for first. The library with the highest version found in the search path
is selected. If no shared library is found or the ‘-Bstatic’ option is in effect,
an archive of the form ‘lib<spec>.a’ is looked for in the library search path.
For amigaos/amigaehf file formats, the libraries are called ‘<spec>.lib’.

‘-M’ Produce output about the mapping of sections of the input files and the values
assigned to symbols in the output file.

‘-minalign alignment’
Set a minimum alignment (number of bits which have to be zero) for all im-
ported sections. The specified alignment value will only take effect when higher
than the section’s current alignment. It defaults to 0.

‘-multibase’
The default behaviour of vlink is to merge all sections which are accessed base-
relative. This guarantees a single small data section, which can be accessed
through a base register. If this is not desired - maybe you have several base
registers and small data sections - you can disable this behaviour by specifying
‘-multibase’.

‘-n’ No page alignment of sections or segments in the final executable (NMAGIC).

‘-nostdlib’
Ignore default library search path, if one was compiled in.

‘-o filename’
Specifies the name of the output file. Defaults to ‘a.out’.

‘-P symbol’
Protect a symbol from stripping. This doesn’t work for all targets!

‘-q’ Emit relocations, even for absolute executables.

‘-R format’
Sets the relocation table format. Usually there is no need to change the default
format defined by the target (‘-b’ option). Valid format strings are:

std standard format with addends in the code

add addends are stored in the relocation table

short relocation table with short offsets (e.g. 16 bit)

Note that most targets only support one or two of those formats.

‘-r’ Produce relocatable object file, suitable for another linker pass.

Chapter 2: The Linker 9

‘-rpath library-search-path’
Add a directory to the runtime library search path. This is used when linking an
ELF executable with shared objects. All ‘-rpath’ arguments are concatenated
and passed to the runtime linker, which uses them to locate shared objects at
runtime.

‘-S’ Strip all debugger symbols from the output.

‘-s’ Strip all symbols from the output.

‘-sc’ Merge all code sections to a single code section.

‘-sd’ Merge all data and bss sections to a single data-bss section.

‘-set-adduscore’
Start adding a preceding underscore for the symbols of the following objects in
the command line.

‘-set-deluscore’
Start deleting a preceding underscore for the symbols of the following objects
in the command line.

‘-shared’ Instructs the linker to build a shared object from the object files rather than a
normal executable image.

‘-soname name’
Sets the "real name" of a shared object or library. For ELF this will create the
SONAME tag in the .dynamic section.

‘-T script’
Specifies a linker script, which defines the absolute locations for every section.
The syntax is very similar to that used in GNU linker scripts. Supported
commands:
− CONSTRUCTORS
− ENTRY
− EXTERN
− FILL
− INPUT
− GROUP
− OUTPUT ARCH
− OUTPUT FORMAT
− PROVIDE
− SEARCH DIR
− VBCC CONSTRUCTORS
− VBCC CONSTRUCTORS ELF

Supported functions:
− ADDR
− ALIGN

10 vlink manual

− KEEP
− LOADADDR
− SIZEOF
− SIZEOF HEADERS
− SORT

‘-t’ Trace the linker’s file accesses.

‘-textbaserel’
Allow base-relative access on code sections. Otherwise the linker will display a
warning.

‘-tos-flags value’
Set the 32 bit flags field of the Atari TOS header to value. All ‘-tos’ options
are only valid for the targets ataritos and aoutmint.

‘-tos-fastload’
Sets the fastload bit (0) in the TOS header.

‘-tos-fastram’
Sets the fastload bit (1) in the TOS header.

‘-tos-fastalloc’
Sets the fastload bit (2) in the TOS header.

‘-tos-private’
Sets the flags in the TOS header to mark memory space as private.

‘-tos-global’
Sets the flags in the TOS header to mark memory space as global (read/write
by any process).

‘-tos-super’
Sets the flags in the TOS header to mark memory space as read-writeable by
processes in supervisor mode only.

‘-tos-readable’
Sets the flags in the TOS header to mark memory space as read-only for other
processes.

‘-u symbol’
Marks symbol as undefined in the first section which was found on the command
line. This might trigger linking of addtional modules from standard libraries.
This is equivalent to the linker script command EXTERN.

‘-V version’
Minimum major version of shared object to be linked.

‘-v’ Prints vlink version string, default library search path and implemented target
file formats.

‘-w’ Suppress all warning messages.

‘-X’ Discard local symbols in the input files that start with the letters ’L’ or ’l’, or
with a dot.

Chapter 2: The Linker 11

‘-x’ Discard all local symbols in the input files.

‘-y symbol’
Trace the manipulations inflicted on symbol.

2.4 Known Problems

− Neither shared objects nor dynamically linked executables can be generated for a.out
format.

− The following options are not really supported: ‘-S’, ‘-X’, ‘-Bsymbolic’
− Source level debugging support is missing for some formats.
− Many linker script commands are still missing.
− Default linker scripts are mostly missing, so you need to provide your own script using

the ‘-T’ option.
− PHDR support for ELF is not perfect.

2.5 Credits

All those who wrote parts of the vlink distribution, made suggestions, answered my ques-
tions, tested vlink, reported errors or were otherwise involved in the development of vlink
(in ascending alphabetical order, probably not complete):
• Karoly Balogh
• Volker Barthelmann
• Mikael Kalms
• Miro Kropacek
• Gunther Nikl
• Jörg Strohmayer

2.6 Error Messages

1. Out of memory
2. Unrecognized option ’%s’
3. Unknown link mode: %s
4. Unknown argument for option -d: %c
5. Option ’-%c’ requires an argument
6. No input files
7. File \"%s\" has a read error
8. Cannot open \"%s\": No such file or directory
9. Invalid target format \"%s\"

10. Directory \"%s\" could not be examined
11. %s: File format not recognized
12. \"%s\" is already an executable file
13. %s: File format corrupted

12 vlink manual

14. %s (%s): Illegal relocation type %d at %s+%x
15. %s: Unexpected end of section %s in %s
16. %s: %s appeared twice in %s
17. %s: Misplaced %s in %s
18. %s: Symbol definition %s in %s uses unsupported type %d
19. %s: Global symbol %s from %s is already defined in %s
20. %s: Unresolved reference to symbol %s in %s uses unsupported type %d
21. %s (%s+0x%x): Reference to undefined symbol %s
22. Attributes of section %s were changed from %s in %s to %s in %s
23. Alignment of section %s was changed from %d in %s to %d in %s
24. %s (%s+0x%x): Illegal relative reference to %s+0x%llx
25. %s (%s+0x%x): %dbit %s reference to %s+0x%llx (value to write: 0x%llx) out of range
26. %s (%s+0x%x): Referenced absolute symbol %s=0x%llx + 0x%llx (value to write:

0x%llx) doesn’t fit into %d bits
27. %s (%s+0x%x): Illegal relative reference to symbol %s
28. %s (%s+0x%x): Relative reference to relocatable symbol %s=0x%llx + 0x%llx (value

to write: 0x%llx) doesn’t fit into %d bits
29. Can’t create output file %s
30. %s (%s+0x%x): Absolute reference to relocatable symbol %s=0x%llx + 0x%llx (value

to write: 0x%llx) doesn’t fit into %d bits
31. Error while writing to %s
32. Target %s: Unsupported relocation type %s (offset=%d, size=%d, mask=%llx) at

%s+0x%x
33. Target %s: Can’t reproduce symbol %s, which is a %s%s%s
34. Option ’%s’ requires an argument
35. %s (%s+0x%x): Calculated value 0x%llx doesn’t fit into relocation type %s (offset=%d,

size=%d, mask=0x%llx)
36. UNUSED
37. %s: Malformatted archive member %s
38. %s: Empty archive ignored
39. %s: %s doesn’t support shared objects in library archives
40. %s: %s doesn’t support executables in library archives
41. %s (%s): Illegal format / file corrupted
42. %s: Consistency check for archive member %s failed
43. %s: Invalid ELF section header index (%d) in %s
44. %s: ELF section header #%d has illegal offset in %s
45. %s: ELF section header string table has illegal type in %s", EF ERROR,
46. %s: ELF section header string table has illegal offset in %s
47. %s: ELF program header table in %s was ignored

Chapter 2: The Linker 13

48. %s: ELF section header type %d in %s is not needed in relocatable objects
49. %s: Illegal section offset for %s in %s
50. %s: ELF %s table has illegal type in %s
51. %s: ELF %s table has illegal offset in %s
52. %s: %s in %s defines relocations relative to a non-existing section with index=%d
53. %s: Symbol %s, defined in %s, has an invalid reference to a non-existing section with

index=%d
54. %s: Illegal symbol type %d for %s in %s
55. %s: Symbol %s has illegal binding type %d in %s
56. %s: Symbol %s in %s is multiply defined
57. %s: Merging a code section with name \" MERGED\"

58. Relative references between %s section \"%s\" and %s section \"%s\" (%s) force a
combination of the two

59. Can’t define %s as ctors/dtors label. Symbol already exists.
60. %s: ELF section header type %d in %s is not needed in shared objects
61. %s: Endianess differs from previous objects
62. Target file format doesn’t support relocatable objects
63. Predefined limits of destination memory region %s for section %s were exceeded

(0x%llx)
64. Section %s(%s) was not recognized by target linker script
65. %s line %d: Unknown keyword <%s> ignored
66. %s line %d: ’%c’ expected
67. %s line %d: Absolute number expected
68. %s line %d: Keyword <%s> expected
69. %s line %d: GNU command <%s> ignored
70. %s line %d: Unknown memory region <%s>
71. %s line %d: Multiple constructor types in output file
72. UNUSED %s line %d: Syntax error
73. UNUSED %s line %d: Can’t define symbols without a section
74. %s line %d: SECTIONS block defined twice
75. %s line %d: Segment %s is closed and can’t be reused
76. %s line %d: Address overrides specified %cMA memory region
77. %s line %d: Segment %s must include both, FILEHDR and PHDR
78. %s line %d: Missing argument
79. %s line %d: Undefined section: <%s>
80. %s line %d: Section %s was assigned to more than one PT LOAD segment
81. First ELF segment (%s) doesn’t contain first section (%s)
82. Intermediate uninitialized sections in ELF segment <%s> (first=<%s>, last=<%s>) will

be turned into initialized

14 vlink manual

83. %s: No load segment for the file header and PHDRS found
84. %s: QMAGIC is deprecated and will no longer be supported
85. %s: a.out %s table has illegal offset or size in %s
86. %s: a.out %s table size in <%s> is not a multiple of %d
87. %s: a.out symbol name has illegal offset %ld in %s
88. %s: a.out symbol %s has illegal binding type %d in %s
89. %s: a.out relocations without an appropriate section in %s
90. %s: illegal a.out relocation in section %s of %s at offset 0x%08lx: <pcrel=%d len=%d

ext=%d brel=%d jmptab=%d rel=%d copy=%d>
91. %s: illegal a.out external reference to symbol %s in %s, which is no external symbol
92. %s: illegal nlist type %lu in a.out relocation in section %s of %s at offset 0x%08lx
93. Target %s: Common symbol %s is unreferenced and will disappear
94. Target file format doesn’t support executable files
95. %s: a.out relocation <pcrel=%d len=%d ext=%d brel=%d jmptab=%d rel=%d

copy=%d> is treated as a normal relocation in section %s of %s at offset 0x%08lx
96. %s: size %d for a.out symbol %s in %s was ignored
97. Target %s: %s section must not be absent for a valid executable file", EF FATAL,
98. Target %s: Section %s is overlapping %s
99. %s line %d: Illegal PHDR type: <%s>

100. %s line %d: <%s> behind SECTIONS ignored
101. %s line %d: Address symbol ’.’ invalid outside SECTIONS block
102. %s line %d: Reference to non-absolute symbol <%s> outside SECTIONS",

EF ERROR,
103. %s line %d: Division by zero
104. %s line %d: Unknown symbol or function: <%s>
105. %s line %d: No function-calls allowed here
106. %s line %d: Symbol <%s> is not yet assigned
107. %s line %d: Command <%s> not allowed outside SECTIONS block
108. %s line %d: Address symbol ’.’ cannot be provided
109. %s line %d: Symbol <%s> already defined
110. %s line %d: Only absolute expressions may be assigned outside SECTIONS block
111. %s line %d: Unknown PHDR: <%s>
112. %s (%s+0x%x): Cannot resolve reference to %s, because section %s was not recognized

by the linker script
113. %s (%s): %d bits per byte are not supported
114. %s (%s): %d bytes per target-address are not supported
115. %s (%s): Relocation type %d (offset=%lld, bit-offset=%d bit-size=%d mask=0x%llx

refering to symbol <%s> (type %d) is not supported
116. %s (%s): Symbol type %d for <%s> in section %s is not suported

Chapter 2: The Linker 15

117. %s (%s+0x%x): Cannot resolve %s reference to %s, because host section %s is invalid
118. %s: Malformatted ELF %s section in %s
119. %s: Ignoring junk at end of ELF %s section in %s
120. %s (%s+0x%x): Relocation based on missing %s section
121. %s (%s+0x%x): Base-relative reference to code section
122. Relocation table format not supported by selected output format - reverting to %s’s

standard
123. Unknown relocation table format ’%s’ ignored
124. Target %s: multiple small-data sections not allowed
125. .ctors/.dtors spread over multiple sections
126. Dynamic symbol reference not supported by target %s
127. %s: ELF symbol name has illegal offset 0x%lx in %s

16 vlink manual

	General
	Introduction
	Legal
	Installation

	The Linker
	Usage
	Supported file formats
	Linker Options
	Known Problems
	Credits
	Error Messages

